Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Dalibor Milić, ${ }^{\text {a* }}$ Marija Renić ${ }^{\text {b }}$ and Dubravka Matković-Čalogovića

${ }^{\text {a }}$ Laboratory of General and Inorganic Chemistry, Department of Chemistry, Faculty of Science, University of Zagreb, Ulica kralja Zvonimira 8, HR-10000 Zagreb, Croatia, and ${ }^{\text {b Laboratory of }}$ Synthetic Organic Chemistry, Department of Organic Chemistry and Biochemistry, Ruder Bošković Institute, PO Box 180, HR-10002
Zagreb, Croatia

Correspondence e-mail: dmilic@chem.pmf.hr

Key indicators

Single-crystal X-ray study
$T=100 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$
R factor $=0.046$
$w R$ factor $=0.120$
Data-to-parameter ratio $=26.3$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

Caesium chloride 2-(N-morpholinio)ethanesulfonate

In the structure of caesium chloride 2-(N-morpholinio) ethanesulfonate, $\mathrm{Cs}^{+} \cdot \mathrm{Cl}^{-} \cdot \mathrm{C}_{6} \mathrm{H}_{13} \mathrm{NO}_{4} \mathrm{~S}$, determined by X-ray diffraction analysis at 100 K , the caesium cation is coordinated by the chloride anion and six O atoms.

Comment

Caesium chloride and 2-(N-morpholino) ethanesulfonic acid (MES) are components of some screens for the crystallization of biological macromolecules. MES is one of the Good buffers (Good et al., 1966), while caesium chloride is mainly used as a crystallization agent. It is not rare that in some crystallization trials, instead of the expected biomacromolecular crystals, crystals of other mother liquor components are formed. In this paper, we report the results of the structural study on a crystal of caesium chloride 2-(N-morpholinio) ethanesulfonate, (I), which was obtained serendipitously while trying to crystallize a certain oligopeptide.

(I)

In the asymmetric unit of (I), there is one molecule of MES in the zwitterionic form, one caesium cation and one chloride anion (Fig. 1). The caesium cation is coordinated by six O atoms and the chloride anion (Fig. 2). Geometrical parameters

Figure 1
The asymmetric unit of (I). The $\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{Cl} 1$ hydrogen bond is denoted by a dashed line. Displacement ellipsoids are drawn at the 50% probability level.

Received 17 March 2005 Accepted 21 March 2005 Online 31 March 2005

metal-organic papers

of the MES molecule are similar to those found in the structures of zwitterionic 2-(N-morpholino) ethanesulfonic acid monohydrate (Nørlund Christensen et al., 1993) and sodium 2(N -morpholino) ethanesulfonate monohydrate (Deschamps et al., 2002), except for the $\mathrm{C}-\mathrm{N}$ bond distances which are, as expected, significantly shorter in the structure of the sodium salt due to the unprotonated N atom. A hydrogen bond is formed between Cl 1 and protonated atom N1 (Table 2).

Experimental

Crystals of (I) were grown by the sitting drop vapour diffusion method. Equal volumes of an aqueous solution of the natural octapeptide PGKPADDA ($20 \mathrm{mg} \mathrm{ml}^{-1}$) and solution No. 24 from Hampton Research Crystal Screen 2 [$0.05 \mathrm{M} \mathrm{CsCl}, 0.1 M$ MES (pH 6.5) and $30 \%(v / v)$ Jeffamine M-600] were mixed and equilibrated against the reservoir solution at 291 K . Crystals suitable for data collection were obtained after seven months.

Crystal data

$\mathrm{Cs}^{+} \cdot \mathrm{Cl}^{-} \cdot \mathrm{C}_{6} \mathrm{H}_{13} \mathrm{NO}_{4} \mathrm{~S}$
$M_{r}=363.59$
Monoclinic, $P 2_{1} / n$
$a=12.110$ (2) A
$b=8.1753(15) \AA$
$c=12.566$ (2) \AA
$\beta=111.963(17)^{\circ}$
$V=1153.7(4) \AA^{3}$
$Z=4$
$D_{x}=2.093 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 2097 reflections
$\theta=3.0-26.5^{\circ}$
$\mu=3.61 \mathrm{~mm}^{-1}$
$T=100$ (1) K
Needle, colourless
$0.40 \times 0.04 \times 0.04 \mathrm{~mm}$

Data collection

Oxford Diffraction Xcalibur CCD diffractometer
ω scans
Absorption correction: analytical
(CrysAlis RED; Oxford
Diffraction, 2003)
$T_{\min }=0.489, T_{\text {max }}=0.862$
15065 measured reflections

Refinement

Refinement on F^{2}
H -atom parameters constrained
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.046$
$w R\left(F^{2}\right)=0.120$
$S=1.10$
3341 reflections
127 parameters
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0661 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\text {max }}=2.99 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-1.58 \mathrm{e}^{-3}$

Table 1
Selected bond lengths (\AA).

Cs1-O3	3.025 (3)	$\mathrm{Cs} 1-\mathrm{O} 2{ }^{\text {iv }}$	3.148 (4)
$\mathrm{Cs} 1-\mathrm{O} 1^{\text {i }}$	3.014 (3)	$\mathrm{Cs} 1-\mathrm{Cl} 1^{v}$	3.7783 (14)
$\mathrm{Cs} 1-\mathrm{O} 1^{\text {ii }}$	3.348 (3)	N1-C2	1.487 (5)
$\mathrm{Cs} 1-\mathrm{O}^{\text {iii }}$	3.143 (3)	N1-C6	1.501 (5)
$\mathrm{Cs} 1-\mathrm{O} 4{ }^{\text {iii }}$	3.069 (3)	N1-C7	1.503 (6)

$-1-x,-y, 1-z$; (v) $-1-x,-y,-z$.

Figure 2
Coordination of the caesium cation. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) $x, y-1, z$; (ii) $-\frac{3}{2}-x$, $y-\frac{1}{2}, \frac{1}{2}-z$; (iii) $-\frac{1}{2}-x, y-\frac{1}{2}, \frac{1}{2}-z$; (iv) $-1-x,-y, 1-z$; (v) $-1-x$, $-y,-z$.]

Table 2
Hydrogen-bonding geometry ($\AA,^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{Cl} 1$	0.93	2.11	$3.039(4)$	173

All H atoms were positioned geometrically $(\mathrm{N}-\mathrm{H}=0.83, \mathrm{C}-\mathrm{H}=$ $0.99 \AA$) and refined using the riding model, with $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{N})$. The highest peak and deepest hole in the difference map are located 0.68 and $0.71 \AA$, respectively, from atom Cs1.

Data collection: CrysAlis CCD (Oxford Diffraction, 2003); cell refinement: CrysAlis RED (Oxford Diffraction, 2003); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

This research was supported by the Ministry of Science, Education and Sports of the Republic of Croatia (grant No. 0119632).

References

Deschamps, J. R., Flippen-Anderson, J. L. \& George, C. (2002). Acta Cryst. E58, m167-m168.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Good, N. E., Winget, G. D., Winter, W., Connolly, T. N., Izawa, S. \& Singh, R. M. (1966). Biochemistry, 5, 467-477.

Nørlund Christensen, A., Hazell, R. G., Lehmann, M. S. \& Nielsen, M. (1993). Acta Chem. Scand. 47, 753-756.
Oxford Diffraction (2003). CrysAlis CCD and CrysAlis RED. Versions 1.170. Oxford Diffraction Ltd, Oxfordshire, England.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

